
Equidistribution of Matrix-Power Residues 
Modulo One 

By Joel N. Franklin 

1. Introduction. In numerical analysis artificial random numbers are generated 
by recurrence formulas of the type 

(1) Xn+1 = {Nxn + f} (n =,1,2, * .). 

Here {y} = y - [y] = the fractional part of y. The number N is an integer > 1. 
The number xo is a given initial value such that 0 < xo < 1. The number 0 is fixed. 
Some early references to numerical work with sequences of the type (1) are given 
by 0. Taussky and J. Todd in [1]. Regarding the sequence xfi as a function of xo, 
I proved in [2] that for almost all xo the sequence xn is equidistributed modulo 1, 
i.e., 

(2) liml Z 1 =b-a 
k-Ioo k a ?2Xn<b; n=O, * ,k-1 

whenever 0 < a < b _ 1. 
The purpose of this paper is to generalize the preceding result to vector-matrix 

recurrence formulas 

(3) xXl - Ax"8) + b} (n = O, 1, ).. 

Here each x(n) is a d-dimensional column vector, b is a d-dimensional column vector, 
and A is a d X d matrix with integer components. In the preceding case (1), d = 1, 
A = N, and b- 0. By { y} for a vector y with real components yi is meant the 
vector with components { yiJ. The vector x?-with parentheses removed around the 
superscript-is given in the unit cube Cd of d dimensions, 

(4) Cd. 0 <-Xi < 1 (i-1 7* d). 

All the vectors xX lie in Cd . The main result of the paper is: A sufficient condition 
that xn be equidistributed for almost all xo is that the matrix A be nonsingular and 
have no eigenvalue which is a root of unity; if b = 0, so that x'+1 = {Ax81 ,the condi- 
tion is necessary as well as suffwient. 

This result has applications to numerical analysis and to the theory of numbers. 
In [3] the one-dimensional sequences (1) were analyzed at length. It was shown 
there that for d > 1 the successive d-tuples 

(5) (XO, I.. *, Xd1) I(Xd X.. * X2d-1) (X2d 7 ** X3d-1)n * ... 

cannot be equidistributed in Cd. In other words, the proportion of these vectors, 
taken sequentially, which lie in a subregion R of Cd cannot generally be expected 
to approach the ratio (volume of R)/(volume of Cd) = volume of R. However, as 
the result stated in the last paragraph shows, if A = diag(N, N, - , N), where 

N = integer >1, the vectors defined by (3) are equidistributed for almost all 
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choices of the d components of the initial vector x?. For example, if d = 3 and b = 0, 
we find that the vectors x' = (un, vn v, wn) (n = 0, 1, * * ) defined by 

(6) Un+ = {Nun, vVn = {NvN+1}, wn = {Nw,+1} 

are equidistributed in the unit cube C3 for almost all initial values uo, vo, wo. 
In the theory of numbers Nwe obtain the following sort of result: For almost all 

real initial values fo , fi , the Fibonacci sequence defined by 

( 7) fn+1 = fn + fn-1 (n = 1, 2, ... 

is equidistributed by twos modulo one, i.e., 

(8) i'n! E 1 = (b, - a,)(b2 - a2) 
k->oo kal fn<bl;a2 _fn+l<b2;nf=O. .k-1 

whenever 0 < ai < b1 ? 1 and 0 < a2 < b2 < 1. Setting a2 = 0, b2 = 1, we ob- 
tain the weaker result that almost all Fibonacci sequences are equidistributed 
modulo one. 

2. The Theorems of Weyl and Riesz. A sequence of d-dimensional, real vectors 

(1) X = (x1~, X2, , Xd) (n = 0 1) 

is said to be equidistributed modulo one if 

1 ~~~~~~~~~~~d 
(2) 1im- Z 1 d = (b,-a,) 

k-oo k ai ?{xjn}<bi (z=1,***,d);n=o, k-1 i=1 

whenever 0 _ ai < bi < 1 (i = 1, *. , d). We shall use the following theorem 
of H. Weyl [4]: 

THEOREM. A sequence (1) of d-dimnensional vectors x (n) is equidistributed modulo 
one if and only if 

k-1 

(3) lim-Z exp 2iri(j,x1 + j2 X2 + + jd Xd) = 0 
k-o>o k n=? 

for all combinations of integers ji, , jd except ji = = = 0. 

We shall also need the ergodic theorem of F. Riesz; see [5] and [2]: 
THEOREM. Let a measurable set Q be given, of finite or infinite measure, the corre- 

sponding measure and integral being defined according to Lebesgue, or more generally, 
by means of a distribution of positive masses. That being the case, let us designate by 
T a point-transformation which is single-valued (but not necessarily one-to-one) from 
Q onto itself; and let us suppose that T conserves measure in the sense that, E being a 
measurable set, TE its transform, and E' the set of points P whose images appear in 
TE, the sets E' and TE have the same measure. Then, if f1(P) is an integrable function 
and fk(P) = fi( Tk lP), the arithmetic mean of the functions fi , f2, *, fn converges 
almost everywhere, as n -- x, to an integrable function i(P) which is invariant 
(almost everywhere) under- T. If Q is of finite measure, 

(4) Af (P) = f1(P). 
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3. Measure-Preserving Congruences Modulo One. Let A be a d X d matrix 
with real components, and let b be a d-component column vector. We define a 
transformation y = Tx of the d-dimensional unit cube Cd into itself by the con- 
gruence 

(1) y Ax + b (mod 1) 

by which we mean y = {Ax + b} or, equivalently, 
d 

Yi- aijxj + bi (mod 1) (i = 1,*, d). 
j=l 

We wish to determine when this transformation is measure-preserving. 
First we remark that the congruence (1) is measure-preserving if and only if 

the congruence 

(2) w Ax (mod 1) 

is measure-preserving. That is because the congruence (1) may be composed of two 
transformations, w = {Ax} and y = {w + b}. Since the second transformation is 
one-to-one and measure-preserving, the composite transformation (1) is meas- 
ure-preserving if and only if the first transformation (2) is measure-preserving. 

Second, we remark that the transformation T is measure-preserving if and 
only if 

(3) f f(P) =Af(TP) 
Cd Cd 

for all scalar functions f which are measurable in Cd . This elementary remark is 
justified by Riesz in [5]. 

LEMMA. Let K be the set of nonzero d-dimensional column-vectors k with integer 
components. Let K1 be the set of d-dimensional real column vectors with at least one 
component equal to a nonzero integer. Then the congruence y -Ax + b (mod 1) is 
measure-preserving in Cd if and only if the transpose matrix A* maps K into K1. 

Proof. Let the measurable function f(P) = f(x) have the Fourier series 

(4) f (x) - c(O) + Z c(k) exp 2,zrik*x. 
kEK 

Since the Fourier series is multiply periodic, the congruence T is measure-preserving 
if and only if 

(5) c(O) = fCf(x) dx l f(Ax) dx 
Cd Cd 

for all measurable f. But 

( f(Ax) dx = c(O) + E c(k) f exp 27rik*Ax dx 
(6) Cd kEK Cd 

= c(O) + E c(k) l exp 2iri(A*k)*x dx. 

Therefore, T is measure-preserving if and only if 
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(7) l exp 2lri(A*k)*x dx = 0 for all k E K 
Cd 

which is true if and only if A*k E K1 for all k E K. 
The lemma shows that, if d = 1, the congruence y = Ax + b is measure-preserv- 

ing if and only if A is a nonzero integer. However, if d > 1, the matrix A may have 
noninteger coefficients. For example, the congruence 

Yi2 (2 1 )6 
xi 

+ (bi) (mod 1) 

is measure-preserving. To see this, we observe that 

A*k ( 
-6k1 + k 

If k E K, the first comsiponent k2/2 is a nonzero integer unless k2 is zero or odd. If 
k2 = 0, the second component = - 6k1 = integer 5 0; if k2 is odd, - 6k1 + k2 = 

even integer + odd integer 5 0. Therefore, A* maps K into K1. 
In the rest of the paper we shall suppose that A has all components equal to 

integers. 
THEOREM. If all the components of A are integers, the congruence y =Ax + b 

(mod 1) is measure-preserving if and only if det A 5 0. 
Proof. This result follows immediately from the lemma. Since A has integer 

components, if det A = 0 there is a vector k E K such that A*k = 0, which is 
not in K1 . If det A 5 0, all vectors A*k are nonzero vectors with integer compo- 
nents when k E K, so that A*k E K E K1. 

4. Ergodic Congruences Modulo One. We shall say that a measure-preserving 
transformation y Tx from the d-dimensional unit cube into itself is ergodic if 
the only measurable functions +(x) for which 

(1) ?(x) = 4(4Tx) almost everywhere in Cd 

are the functions O(x) = constant a.e. (almost everywhere). 
LEMMA. Let B be a d X d matrix with integer components. Let K be the set of non- 

zero d-dimensional column-vectors with integer components. Then the sequence of 
vectors k, Bk, B2k, ... is unbounded for every k in K if and only if B has no eigenvalue 
which is zero or a root of unity. 

Proof. Suppose that for some k in K the sequence B3k is bounded. Since B and 
k have integer components, each of the vectors Bjk must be one of the finite number 
of integer-component vectors which lie in some bounded subset of d-dimensional 
Euclidean space. Therefore, Brk = B8k for some r > s. If B has no zero eigenvalue, 
B is nonsingular and BJk = k for q = r -s. But then 

q-1 

0 = det (B' - I) = II det (B - cjI) 
j=0 

where co = exp (21ri/q). Then one of the roots of unity co' is an eigenvalue of B. 
Conversely, if B has a zero eigenvalue, since B has integer components, there 
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is an eigenvector k in K such that 0 = Bk = B2k = , a bounded sequence. If 
B has an eigenvalue which is a qth root of unity, then B' has 1 as an eigenvalue. 
Then there is an eigenvector k in K such that Bqk = k, and the sequence Bjk is 
periodic, hence bounded. 

THEOREM. Let A be a nonsingular d X d matrix with integer components, and let 
b be a d-dimensional column-vector with real components. Then the measure-preserving 
congruence y =_ Ax + b (mod 1) is ergodic if A has no eigenvalue which is a root of 
unity. The congruence y Ax (mod 1) is ergodic if and only if A has no eigenvalue 
which is a root of unity. 

Proof. Let Tx Ax + b (mod 1), where b is a vector with real components, 
and A is a nonsingular matrix with integer components and with no eigenvalue 
equal to a root of unity. Then B = transpose of A = A* has no eigenvalue which 
is zero or a root of unity. According to the lemma, B3k is unbounded as j -o 

for every k in K. 
Let +(x) be any measurable function satisfying (1). Since T is measure-preserv- 

ing, 

(2) +(x) = 4(T'x) a.e. for all j = 1, 2, . 

The measurable function +(x) has a Fourier series 

(3) +(x) -- a(O) + E a(k) exp 27rik*x. 
kEK 

Furthermore, 

(4) T'x +Ax ? b(j) (mod 1) 

where b(j) = b + Ab + * + A 'lb. Therefore, 

O(T'x) a(O) + E a(k) exp 2rik*(A3x + b0') 
kEK 

or, equivalently, with B = A*, 

(5) O(TVx) - a(O) + E (a(k) exp 27rik*b(J)) exp 27ri(Blk)*x. 
kEK 

Therefore, 

a(k) exp 27rik*b(j) = 45(T'x) exp (-27ri(B)k)*x) dx 
(6) Cd 

3 f +(x) exp (-2ri(Bjk)*x) dx. 
Cd 

Since B3k is unbounded for each k in K, the integrals (6) tend to zero for some 
subsequence of j tending to oo. But the left-hand side of (6) has modulus I a(k) I 
for all j. Therefore, a(k) = 0 for all k E K. Then the Fourier series for 4(x) con- 
sists only of the constant term a(O). Therefore, +(x) equals this constant almost 
everywhere. 

If Tx Ax (mod 1), i.e., if b = 0, we can show that the transformation is 
ergodic only if A has no eigenvalue which is a root of unity. Suppose that A, and 
therefore B, have eigenvalues which are qth roots of unity. Then B k = k for some 
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k in K. Let p be the smallest positive integer such that B'k = k. Since A, and there- 
fore B, is nonsingular, no two of the vectors, k, Bk, *, BP-'k are equal. There- 
fore, the function 

p-1 

(7) O(x) = exp (2irik*A3x) 
j=0 

is nonconstant. But k(x) = O(Tx), since k*AP = (BPk)* = k*. Therefore, T is 
not ergodic. This completes the proof of the theorem. 

If b 5? 0, the transformation Tx - Ax + b (mod 1) may be ergodic even if A 
has an eigenvalue which is a root of unity. For example, the transformation Tx _ 
x + b is ergodic if and only if the components of b are rationally independent, i.e., 
if k*b 7 integer for all k in K. This result follows immediately from the uniqueness 
of the Fourier series of a measurable function O(x). 

A more interesting question arises, when A 5z? I. For example, consider the 
transformation 

(8) Tx (0 O(x:) + (A/) (mod 1). 

If O(x) has the F'ourier series (3), then 

O(TVx) -- a(O) + E aj(k) exp 2iri(23klx1 + k2x2) 
kEK 

where aj( k) = a(k) exp 27rik2 2. Then the invariance (1) implies 
1 1 

aj (k) = f I (x) exp -2ri(2jki xi + k2 x2) dx1 dx2. 

Letting j -> oo, we see that a((k) = 0 unless ki = 0. But then 
00 

+P(X1, X2) E a(0, k2) exp 27rik2x2. 
k2FO 

Now the irrationality of V/2 implies that a(O, k2) = 0 for all k2 5z 0. Therefore, 
the transformation (8) is ergodic. 

THEOREM. Let 

=y Nx1 + bi (mod 1) 

yS xs+bs (s=2, ..., d) 

where N is an integer with absolute value > 1, and the b8 are real. This measure- 
preserving transformation is ergodic if and only if k2b2 + ***+ kdbd 5z integer for 
any integers k2 , k d , Jo which are not all zero. 

Proof. This theorem is an immediate and obvious generalization of the preceding 
example. 

5. Equidistribution of Matrix-Power Residues. 
THEOREM. Let A be a d X d matrix with integer components. Let b be a d-dimen- 

sional column vector with real ccoiponents. Given the vector x = x (0), construct the 
sequence x(j) by the recurrence formula 
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( 1 ) x(i+') Ax(j) + b (mod 1) 

for j = 0, 1, * . This sequence is equidistributed modulo one for almost all x if A 
has to eigenvalue equal to zero or a root of unity; if b = 0, the sequence is equidistributed 
for almost all x if and only if A has no eigenvalue equal to zero or a root of unity. 

Proof. If A has no eigenvalue equal to zero, A is nonsingular; and, according 
to the theorem in Section 3, the transformation Tx = Ax + b (mod 1) is measure- 
preserving. Therefore, by the Riesz ergodic theorem, for all measurable functions f 

k-1 

(2) 1Z f(xWj)) > (x) as k -o 
j=o 

for almost all x = x(?), where ?P(x) = O(Tx) a.e. By the first theorem in Section 4, 
if A is nonsingular and has no eigenvalue which is a root of unity, O(x) = constant 
a.e. By the Riesz ergodic theorem, since the d-dimensional unit cube Cd has finite 
measure = 1, the constant q5 has the integral 

(3) f f(x) dx fA)dx = 4. 

If O < ai < bi < 1 (i =1, d) define 

f(x) = f(xi, X,d) = 1 for ai _ xi < bi (i = 1, ... , d) 

= 0 elsewhere in Cd . 

From (2) and (3) we have the result, for almost all x, that the sequence x(i) is 
equidistributed in Cd . 

For b = 0 we must prove the "only if" part of the theorem. First suppose that 
A has an eigenvalue equal to zero. Then A*k = 0 for some k in K. Let 

(5) f(x) = exp 27rik*x. 

Since f(x) is Riemann-integrable, we must have 
n-I 

(6) lim - ( = f(x) dx 
noo n j=o cd 

if x(j) is equidistributed; for a proof of this result see Koksma [6]. From (5) we have 

(7) f(x(j)) = exp 2,nrik*A jx = 1 (j _ 1) . 

Therefore, the limit on the left-hand side of (6) equals one. Since the integral of 
f(x) equals zero, equation (6) is false; and the sequence x(2) cannot be equidis- 
tributed. 

Finally, for b = 0 suppose that A is nonsingular but that A has an eigenvalue 
which is a root of unity. Construct the nonconstant, Riemann-integrable function 
4)(x) defined in formula (7) of Section 4. Since 4(x) = q5(Tx), we have 

n-1 

(8) 1 Z (x(i)) = 0(x?0)) = +(x) for all n. n j=o 

But 

(9) f +(x) dx = 0. 
Cd 
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Therefore, the sequence x(j) cannot be equidistributed. This completes the proof 
of the theorem. 

6. Application to Numerical Analysis. In Monte Carlo calculations in d dimen- 
sions, the basic property required of pseudo-random vectors x(S) is usually the 
property (6) of Section 5. This property is equivalent to the equidistribution of the 
x(i). The reader is now referred back to the next to the last paragraph of Section 1. 

7. Equidistribution of Fibonacci Sequences. We shall say that a sequence of 
real numbers x,. is equidistributed by d's modulo one if the sequence of successive 
d-tuples 

Xn+1 

(l) X~~~~(n) = Xn+2 (n - 0 1, 

xn+d 

is equidistributed modulo one, as defined in Section 2. This concept was considered 
at length in [3]. For d = 1 we have the usual definition for the equidistribution of 
x. modulo one. A sequence equidistributed by d's for d > 1 is equidistributed by 
r's for 1 < r < d, but the converse is false. 

THEOREM. Let a general Fibonacci sequence Xn be defined by 

(2) Xn= alxn l+ a2xn2 + *-- + adxnd (n> d) 

where a, , a2, , * ad are integers. Then for almost all real initial values xi , ... Xd 

the sequence Xn is equidistributed by d's modulo one if and only if 

(3) zd ? a d-I + a2zd + + ad 

for z = O or for z = a root of unity. 
Proof. Define the matrix 

O 1 0 ... X 
O 0 1 ... O 

(4) A= . . 

o 0 0 ... 1 
ad ad-l ad-2 ... alj 

The relation (2) is equivalent to the vector-matrix relation 

(5) X(+l) = Ax (n = 0, 1, ...). 

The eigeiuvalues of A are the roots of the equation 

(6) O = det (zI-A) = zd - alzd-1- -a. 

The theorem now follows directly from the result in Section 5. 

California Institute of Technology 
Pasadena, California 
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